

Welcome to the inputs documentation!

Release v0.5

[image: _images/inputs.svg]
 [https://pypi.org/project/inputs/][image: _images/inputs1.svg]
 [https://pypi.org/project/inputs/][image: _images/inputs2.svg]
 [https://pypi.org/project/inputs/][image: codecov.io]
 [https://codecov.io/gh/zeth/inputs][image: _images/fc0229db3202a5fc887d659ef387ec89b39d6bd5.svg]
 [https://saythanks.io/to/zeth]Inputs aims to provide cross-platform Python support for keyboards, mice and gamepads.

This site covers the usage of Inputs. To see the source code see the main project website on Github [https://github.com/zeth/inputs].

The User Guide

We begin with some background information about Inputs, then focus on
step-by-step instructions for getting the most out of Inputs.

	Introduction
	Why Inputs?

	Note to Children

	Install

	Windows permissions

	Linux permissions

	Mac permissions

	Quick Start

	Advanced Information

	Hardware Support
	Linux

	Chromebook (in developer mode)

	Raspberry Pi

	Windows

	Apple macOS High Sierra - 10.13

	Examples

	Microbit Gamepad
	Usage

	Setup

	Usage

	Examples

Developer Information

If you want to contribute to the project, this part of the documentation is for
you.

	Contributor’s Guide
	How to Help

	How to Develop

	Get Early Feedback

	Credits

Introduction

The inputs module provides an easy way for your Python program to
listen for user input.

Currently supported platforms are Linux (including the Raspberry Pi
and Chromebooks in developer mode), Windows and the Apple Mac.

Python versions supported are all versions of Python 3 and your
granddad’s Python 2.7.

Inputs is in pure Python and there are no dependencies on Raspberry
Pi, Linux or Windows. On the Mac, inputs needs PyObjC which the
included setup.py file will install automatically (as will pip).

Why Inputs?

Obviously high level graphical libraries such as PyGame and PyQT will
provide user input support in a very friendly way. However, the inputs
module does not require your program to use any particular graphical
toolkit, or even have a monitor at all.

In the Embedded Linux, Raspberry Pi or Internet of Things type
situation, it is quite common not to have an X-server installed or
running.

This module may also be useful where a computer needs to run a
particular application full screen but you would want to listen out in
the background for a particular set of user inputs, e.g. to bring up
an admin panel in a digital signage setup.

This module is a single file, so if you cannot or are not allowed to
use setuptools for some reason, just copy the file inputs.py into your
project.

The killer feature of inputs over other similar modules is that it is
cross-platform. It normalises the event data so no matter what platform
you (or your users) are on, you can write a program on your operating
system and it will work the same on other operating systems.

I.e. you don’t have to fill your program with if Linux do this, if Windows
do that, etc.

The caveat to the above is that not all operating systems support the
same subset of devices by default. See Hardware Support for what
is currently known to work.

Note to Children

It is pretty easy to use any user input device library, including this
one, to build a keylogger. Using this module to spy on your mum or
teacher or sibling is not cool and may get you into trouble. So please
do not do that. Make a game instead, games are cool.

Install

Install through pypi using pip (or your favourite trendy tool):

pip install inputs

Or download it from github:

git clone https://github.com/zeth/inputs.git
cd inputs
python setup.py install

Inputs written is in pure Python and there are no dependencies on
Raspberry Pi, Linux or Windows. On the Mac, inputs needs PyObjC which
the included setup.py file will install automatically (as will pip).

Windows permissions

By default Windows doesn’t stop inputs. However, if you have some
third-party security software you may need to white-list Python. Try
it and find out.

Linux permissions

On the Raspberry Pi’s Raspbian everything just works.

However, each Linux distribution is different. Some will work straight
away, for some you need to fiddle with permissions.

Linux distributions often (quite rightly) assume that applications are
installed through their package manager and given the relevant
permissions to access the input devices. However, inputs.py is brand
new and not yet packaged by any Linux distribution.

Therefore, if the inputs module works as root (e.g. using sudo) but
not as your normal user, then you usually need to add yourself to an
inputs group or similar.

Mac permissions

On the Mac, until you write a proper installer for your program, you
will probably have to use the settings application to allow your
program to access the input devices.

[image: ../_images/macsecurity.png]

The first time you use inputs, it will not have any output, then you
will either get the above settings window pop up automatically, or you
will need to find your way there.

Quick Start

To access all the available input devices on the current system:

>>> from inputs import devices
>>> for device in devices:
... print(device)

You can also access devices by type:

>>> devices.gamepads
>>> devices.keyboards
>>> devices.mice
>>> devices.other_devices

Each device object has the obvious methods and properties that you
expect, stop reading now and just get playing!

If that is not high level enough, there are three basic functions that
simply give you the latest events (key press, mouse movement/press or
gamepad activity) from the first connected device in the category, for
example:

>>> from inputs import get_gamepad
>>> while 1:
... events = get_gamepad()
... for event in events:
... print(event.ev_type, event.code, event.state)

>>> from inputs import get_key
>>> while 1:
... events = get_key()
... for event in events:
... print(event.ev_type, event.code, event.state)

>>> from inputs import get_mouse
>>> while 1:
... events = get_mouse()
... for event in events:
... print(event.ev_type, event.code, event.state)

Advanced Information

A keyboard is represented by the Keyboard class, a mouse by the Mouse
class and a gamepad by the Gamepad class. These themselves are
subclasses of InputDevice.

The devices object is an instance of DeviceManager, as you can prove:

>>> from inputs import DeviceManager
>>> devices = DeviceManager()

The DeviceManager is reponsible for finding input devices on the
user’s system and setting up InputDevice objects.

The InputDevice objects emit instances of InputEvent. So from top
down, the classes are arranged thus:

DeviceManager > InputDevice > InputEvent

So when you have a particular InputEvent instance, you can access its
device and manager:

>>> event.device.manager

The event object has a property called device and the device has a
property called manager.

As you can see, it is really very simple. The device manager has an
attribute called codes which is giant dictionary of key, button and
other codes.

Hardware Support

Support for different input devices is increasing over time. Currently
tested hardware combinations are as listed below.

If one of these combinations does not work, that is likely a bug,
while support for new devices is a feature request.

Linux

	All USB Keyboards

	All USB Mice

	Laptop built in keyboard and touchpads

	Xbox 360 Controller via USB cable

	Xbox One Controller via USB cable

	PS4 Controller via USB cable

	PS3 Controller via USB cable (press PS button if controller is not awake)

	Pi-Hut SNES Style USB Gamepad

	Wii controller

Chromebook (in developer mode)

All the above devices listed under Linux.

Raspberry Pi

All the above devices listed under Linux, plus:

Raspberry Pi Sense HAT

The microcontroller on the Raspberry Pi Sense HAT presents the
joystick to the operating system as a keyboard, so find it there under
keyboards. If you worry about this, you are over-thinking things.

Raspberry Pi Touch Screen

This presents as a mouse. Again please do not over think it.

Windows

	All USB Keyboards

	All USB Mice

	Laptop built in keyboard and touchpads

	Xbox 360 Controller via USB cable

	Xbox One Controller via USB cable

PS4 DualShock 4 Controller

Install the Windows driver from http://ds4windows.com/

Then it works perfectly. Even the touchpad works as a mouse.

Apple macOS High Sierra - 10.13

	Built in keyboard and touchpads

	All Apple USB keyboards and Mice

Examples

Friendly examples are provided in the inputs repository [https://github.com/zeth/inputs/tree/master/examples].

You can also find them below:

	devices_example.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/devices_example.py] - lists the devices that have been found on your computer.

	keyboard_example.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/keyboard_example.py] - shows an easy way to get keyboard events.

	mouse_example.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/mouse_example.py] - shows an easy way to get mouse events.

	gamepad_example.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/gamepad_example.py] - shows an easy way to get gamepad events.

	vibrate_example.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/vibrate_example.py] - showing how to get a gamepad to vibrate.

	jstest.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/jstest.py] - shows gamepad events in a summary view, in the style of jstest.

There are two examples for the BBC Microbit, see Microbit Gamepad for more details.

	jstest_microbit.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/jstest_microbit.py] - shows microbit events, in the style of jstest.

	vibrate_microbit.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/vibrate_microbit.py] - an led effect to simulate vibration.

We hope to add more examples in the future.

Microbit Gamepad

The micro:bit is a tiny programmable ARM device that costs about £10-15.

[image: ../_images/microbit.jpg]

Usage

To simulate a D-Pad, you can use the accelerometer, tilt the whole
device forward, backward, left or right.

It has two press buttons labelled A and B, and three ring buttons.

To use the ring buttons, hold ground (GND) with your right hand and
then press 0, 1, or 2 with your left hand.

Setup

You need to setup bitio. Get it from the following link and follow the
instructions:

https://github.com/whaleygeek/bitio/

Basically you need to install the bitio hex file onto the microbit and
put the microbit module into your Python path.

(Quick fix for testing is to symlink the microbit module into the same
directory as the examples).

Usage

Plug the microbit into your computer using USB, the LED display on the
Microbit should the letters IO to show that you have bitio
successfully installed onto the microbit.

We start by detecting the microbit.

>>> import inputs
>>> inputs.devices.detect_microbit()

When inputs has detected the microbit, the LED display will change to
show a vertical line in the middle of the screen.

You can now use the microbit like a normal gamepad:

>>> gamepad = inputs.devices.microbits[0]
>>> while 1:
... events = gamepad.read()
... for event in events:
... print(event.ev_type, event.code, event.state)

Examples

There are two examples provided:

	jstest_microbit.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/jstest_microbit.py] - shows microbit events, in the style of jstest.

	vibrate_microbit.py [https://raw.githubusercontent.com/zeth/inputs/master/examples/vibrate_microbit.py] - an led effect to simulate vibration.

Contributor’s Guide

Inputs is under active development, and contributions are more than welcome!

How to Help

	Run the tests and the examples on your system, provide feedback about worked and what didn’t.

	Test different devices to see what happens

	Add support for more devices

	Write more examples using inputs to do fun things.

How to Develop

Inputs is managed using github. To get started with developing inputs,
download the code from github and run the tests using the below:

git clone https://github.com/zeth/inputs.git
cd inputs
python setup.py test

What next?

	Check for open issues or open a fresh issue to start a discussion around a bug.

	Fork the repository [https://github.com/zeth/inputs] on GitHub and start making your
changes to a new branch.

	Write a test which shows that the bug was fixed.

	Send a pull request and bug the maintainer until it gets merged and published. :)

Get Early Feedback

A quote from a completely different Python project seems apt here:

Note

If you are contributing, do not feel the need to sit on your contribution until it is perfectly polished and complete. It helps everyone involved for you to seek feedback as early as you possibly can. Submitting an early, unfinished version of your contribution for feedback in no way prejudices your chances of getting that contribution accepted, and can save you from putting a lot of work into a contribution that is not suitable for the project.

—Cory Benfield

Credits

Inputs is by Zeth, all mistakes are mine.

Thanks to Dave Jones for stick.py which is not only the basis for
Sense HAT stick support in this module but more importantly also
taught me an easier way to parse the Evdev event format in Python:

https://github.com/RPi-Distro/python-sense-hat/blob/master/sense_hat/stick.py

https://github.com/waveform80/pisense/blob/master/pisense/stick.py

Thanks to Andy (r4dian) and Jason R. Coombs whose existing (MIT
licenced) Python examples for Xbox 360 controller support on Windows
helped me understand xinput greatly. Xbox 360 controller support on
Windows here is based on their work:

https://github.com/r4dian/Xbox-360-Controller-for-Python

http://pydoc.net/Python/jaraco.input/1.0.1/jaraco.input.win32.xinput/

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/macsecurity.png
Security & Privacy Q search

| General _FileVault _Firewall [UE

Location Services Allow the apps below to control your computer.

@ [l rerminal

- Diagnostics & Usage

(Click the lock to prevent further changes. Advanced.

_images/microbit.jpg

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to the inputs documentation!

 		
 Introduction

 		
 Why Inputs?

 		
 Note to Children

 		
 Install

 		
 Windows permissions

 		
 Linux permissions

 		
 Mac permissions

 		
 Quick Start

 		
 Advanced Information

 		
 Hardware Support

 		
 Linux

 		
 Chromebook (in developer mode)

 		
 Raspberry Pi

 		
 Raspberry Pi Sense HAT

 		
 Raspberry Pi Touch Screen

 		
 Windows

 		
 PS4 DualShock 4 Controller

 		
 Apple macOS High Sierra - 10.13

 		
 Examples

 		
 Microbit Gamepad

 		
 Usage

 		
 Setup

 		
 Usage

 		
 Examples

 		
 Contributor’s Guide

 		
 How to Help

 		
 How to Develop

 		
 Get Early Feedback

 		
 Credits

_static/up-pressed.png

_static/up.png

